
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 11, NO. 2, FEBRUARY 2001 77

Incorporating Two-Port Networks with
S-Parameters into FDTD
Xiaoning Ye and James L. Drewniak, Member, IEEE

Abstract—A modeling approach for incorporating a two-port
network with -parameters in the finite-difference time-domain
(FDTD) method is reported in this paper. The proposed method
utilizes the time-domain -parameters to describe the network
characteristics, and incorporates the -parameters into the FDTD
algorithm. The generalized pencil-of-function (GPOF) technique
is applied to improve the memory efficiency of this algorithm by
generating a complex exponential series for the -parameters and
using recursive convolution in the FDTD updating equations. A
modeling example is given, which shows that this approach is ef-
fective and accurate. This modeling technique can be extended for
incorporating any number of N-port networks in the FDTD mod-
eling.

Index Terms—FDTD method, generalized pencil-of-function
(GPOF), -parameters.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method has
been widely used to analyze many different types of elec-

tromagnetics problems. Work has been reported that extends
the FDTD method to include passive and active elements in
the modeling [1]–[3], where circuit elements such as resistors,
capacitors, inductors, diodes, and transistors were treated as
subgrid models on the FDTD mesh. Similar implementations
of two-ports by time-domain convolution, and the insertion of
lumped elements into distributed time-domain field models
have been reported earlier for the TLM method [4]–[6].
An FDTD algorithm has also been proposed to simulate
realistic devices with both active and nonlinear regions [7].
This algorithm used an extrapolated polynomial fit for the
current–voltage relationship in the active and nonlinear region,
and then expanded it in a Taylor series so that a finite difference
representation of the equivalent circuit at the subcell level could
be obtained. In [8], a lumped equivalent circuit of a microwave
amplifier was used to characterize the current–voltage relation-
ship of the device. Circuit theory was then applied to determine
the node voltage by solving the state equation of the equivalent
circuit at each time step. The voltage was then fed back into
the FDTD simulation via an impressed current source
in the Ampere’s current law,
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Another approach for including lumped circuit elements in
FDTD modeling was reported in [9]. The methodology allows
direct access to SPICE to model the lumped circuits, while the
full 3-dimensional solution to Maxwell’s equations provides
the crosstalk and dispersive properties of the microstrip lines
and striplines in the circuit. The FDTD and SPICE computer
programs may be coupled using various interprocess commu-
nication techniques.

The work presented herein demonstrates an approach for in-
corporating a two-port network in the modeling if the-param-
eters (or any parameter set that can be converted to- or -pa-
rameters) are provided. The method converts the-parameters
of the two-port network into -parameters, and uses an inverse
fast Fourier transform (IFFT) to obtain the time-domain series of
the -parameters. The generalized pencil-of-function (GPOF)
technique is utilized to approximate the time-domain-param-
eters with a complex exponential series. The two-port network is
incorporated in the FDTD modeling by specifying an impressed
current source at each port. Using the experimental series re-
sults in a recursive convolution for the FDTD time-marching
equations, which improves the memory efficiency. A modeling
example is given to demonstrate the effectiveness and accuracy
of this approach.

II. I NCORPORATING ATWO-PORT NETWORK WITH

-PARAMETERS IN THE FDTD ALGORITHM

Simple networks may have an equivalent lumped element cir-
cuit model, and can be included in FDTD modeling using the al-
gorithms reported in [2], [8]. However, a general algorithm that
incorporates the network in the FDTD modeling can be very
helpful. This is especially true for those cases where derivation
of an equivalent circuit is difficult, or, the network is character-
ized by measurements.

The electric field time-stepping equation in the proposed al-
gorithm is modified to allow for the addition of a two-port net-
work. The Ampere’s Law Maxwell equation becomes

(2)

where is an impressed current density through which the
network will be incorporated [3]. The network can also include
nonlinearities and dispersion. Assuming the network is oriented
along the direction of the FDTD mesh, the current density is
related to the node current as

(3)
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At Port 1 of the network

(4)

where indicates convolution.
The time-stepping equation can then be readily developed

from (2) and (4). In order to incorporate the network charac-
teristics in the time domain, this approach converts the-pa-
rameters into -parameters, then performs an IFFT to translate
the -parameters into the time domain. The frequency-domain

-parameters are further extended to by conjugating the
first steps before application of the IFFT in order to get a real
time-domain sequence. The presence of the convolution in (4)
requires storing the complete E-field and-parameter time his-
tories, which increases memory usage. The GPOF technique is
employed here [10], which uses a finite sum of complex expo-
nentials to describe the time response sequences of the-pa-
rameters [ , , , and ], as

(5)

where and are the terms obtained by the GPOF
method, and generally are complex numbers. For simplicity in
the present development, the network is assumed located in free
space, though this is not necessary. The time-marching equation
for the -component of the electric field at Port( 1 or
2) is shown in (6) at the bottom of the page. Substituting (5)
into (6) results in a recursive convolution for the time-marching
equation, where

(7)

and

(8)

Since the time response is always real, the constants
and always come in conjugate pairs if they are

complex numbers, otherwise they are purely real. It can be
shown then that the left-hand-side of (7) always results in a

real number, which is necessary for the electric field updating
equation in (6).

Application of the GPOF algorithm to generate the-pa-
rameters as an exponential series allows for recursive updating
equations, where only the intermediate parameters
are stored for the current time step. These intermediate parame-
ters are then overwritten at each following time step, without the
need of storing the complete time history for the convolution.
This treatment minimizes the computer memory usage. Fig. 1
shows the necessary data processing sequence for the network
before incorporating it into the FDTD simulation. The constants

and , which characterize the two-port network, are
used as the input circuit description of the network for the FDTD
simulation.

III. A M ODELING EXAMPLE

A simple microstrip circuit with a lumped-element network
shown in Fig. 2 is used as an example to demonstrate the mod-
eling algorithm. Two sections of microstrip line were connected
by a low-pass filter that consists of several lumped elements.
The value of each individual lumped element and the dimen-
sions of the microstrip circuit are shown in the figure. The char-
acteristic impedance of the microstrip line was , as calcu-
lated using an empirical equation [11]. The was then mod-
eled through two different approaches. The first approach used
the traditional FDTD method with lumped element modeling al-
gorithms as described in [2]. In the second modeling approach,
the -parameters for the lumped-element network were calcu-
lated, and the data processing procedures described in Fig. 1
were performed to obtain the constants and for
the network. These constants, which described the characteris-
tics of the network, were used as the input information of the
two-port network instead of the lumped element values. Recur-
sive convolution for the network was then used in the FDTD
updating.

The FDTD cell size in the modeling was 1 mm 1
mm 0.5 mm for both simulations. Eight perfectly
matched layers (PML) were placed at the boundary of the
computational domain to mimic an open-region problem, and
seven white space layers were placed between the PML and the
circuit. In this particular case, three cells were used to model
the thickness of the dielectric, and the network port spanned
only one cell. A connection was made to the trace and ground
plane by adding two wires to span the other two cells of the
board thickness to ensure current continuity. The connecting
wires were modeled with a thin-wire algorithm [12]. The
algorithm can be applied over multiple cells, but only a single
cell is used here for simplicity. The modeled using the

(6)
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Fig. 1. Data processing sequence to incorporateS-parameters into the FDTD
modeling.

Fig. 2. Microstrip circuit example to demonstrate the algorithm for
incorporating a two-port network in the FDTD modeling.

lumped-element and -parameters approaches is shown in
Fig. 3. The directly calculated from the lumped-element
circuit without the microstrip lines is also shown in the same
figure. The results indicate that the distributed behavior of the
circuit is manifested at frequencies greater than 600 MHz.
Good agreement was achieved between the results using the
two different modeling approaches. This indicates that the
proposed algorithm is feasible and accurate for incorporating a
two-port network in the FDTD modeling using-parameters.
The -parameters can be obtained from calculation, measure-
ments, or data sheets, etc.

The required CPU time for both the lumped-element and
-parameter approaches is comparable unless there are a large

number of networks in the computational domain. Otherwise,
the computational time is dominated by the general scattering
and PML time-marching equations. However, the new mod-
eling approach has the advantage of ease of implementation for
a more complex network, in particular, for those cases that an
equivalent circuit model is not available. The GPOF technique
and recursive convolution can also significantly reduce the
memory requirement for a large number of networks. Another
advantage of this method is that it can be easily extended to
include multiport networks with -parameters, since for an

-port network, the impressed current at Portfor (2) can be
written as

(9)

and derivation of the time marching equations similar to (6) is
straightforward.

IV. CONCLUSION

An approach for incorporating a two-port network through
-parameters in FDTD modeling is reported in this paper. The

Fig. 3. FDTD modeledjS j for the circuit shown in Fig. 2.

method uses the time-domain-parameters to describe the net-
work characteristic, and incorporates them into the FDTD algo-
rithm. The GPOF technique is applied in order to do the con-
volution recursively, which improves the memory efficiency. A
two-port microstrip circuit example demonstrates this approach.
Further, the reported modeling approach can be readily extended
to incorporate any number of -port networks in the modeling.
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